ОЦЕНКА ИННОВАЦИЙ НА ЭТАПЕ ПРОЕКТА ЧЕРЕЗ КРИТЕРИАЛЬНУЮ ОЦЕНКУ

Н.П. ЧЕТВЕРИК, зампредседателя комитета инновационных технологий в строительстве НОСТРОЙ

О рассмотрении инноваций на этапе проекта (на стадии архитектурно-строительного проектирования) через критериальную оценку. В статье раскрывается методология такой оценки, которая используется при оценке эффективности инноваций без наличия точных данных.

В Концепции долгосрочного социально-экономического развития РФ на период до 2020 г. и Стратегии национальной безопасности России поставлена задача включения в процесс архитектурно-строительного проектирования инноваций на основе современных организационно-управленческих решений [1-4]. Включение новейших эффективных инновационных технологий и материалов в состав архитектурного проекта должно быть решением всех проектных организаций [5-14].

Суть отбора инноваций на этапе проекта заключается в рассмотрении их соответствия каждому из установленных критериев (критериальная оценка).

Основным критерием для оценки инноваций на этом этапе является система критериев безопасности инноваций на соответствие требуемой прочности и устойчивости при возможных неблагоприятных сочетаниях расчетных нагрузок и воздействий недопустимым предельным состояниям. Особое внимание следует обратить на соответствие инноваций требованиям безопасности при наличии в районе строительства природоопасных явлений: сейсмика, просадочность, вечная мерзлота, карсты, оползни, заторфованность и др.

Под критериями безопасности инноваций понимаются предельные значения количественных и качественных показателей состояния строительных конструкций, строительных материалов и технологий в условиях эксплуатации, соответствующих допустимому уровню риска аварии.

Начнем со строительных конструкций. Актуальность проблемы оценки надежности строительных конструкций в современных экономических условиях существенно возросла. Это связано с тем, что существующие нормы проектирования строительных конструкций не содержат ни методов оценки надежности, ни ее количественных показателей, в результате чего проектировщик, выполнив расчет, не имеет точного представления о том, насколько надежна данная конструкция.

Определение критериальных значений безопасности строительных конструкций как инноваций на соответствие требуемой прочности и устойчивости

следует осуществлять на основе многофакторного анализа следующей информации:

- расчет по 1 и 2 предельным состояниям;
- расчет напряженно-деформированного состояния в зависимости от типа материала и конструкции, в т.ч. при помощи решения задач теории упругости, ползучести, пластичности,

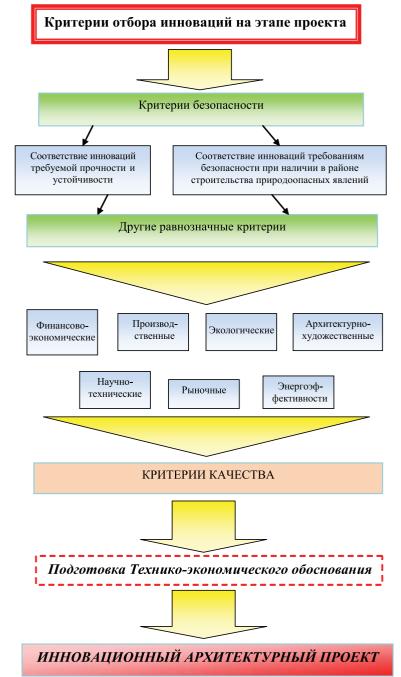


Рис. Рассмотрение инноваций на этапе проекта через критериальную оценку

Таблица. Характеристика важнейших свойств строительных материалов

	Таблица. Характеристика важнейших свойств строительных материалов						
№ п/п	Наименование свойства или коэффициента	Определение	Формула	Размерность	Пояснения		
1	2	3	4	5	6		
1	Истинная плотность	Масса единицы объема в абсолютно плотном состоянии	$\rho = \frac{m}{V_a}$	г/см ³ , кг/м ³	m — масса образца материала, г; V_{a-} объем в абсолютно плотном состоянии (без пор), см ³		
2	Средняя плотность	Масса единицы объема в естественном состоянии (вместе с порами)	$\rho_m = \frac{m}{V_e}$	г/см ³ , кг/м ³	V_{e-} объем в естественном состоянии (с порами), см ³		
3	Относительная плотность	Отношение плотности материала к плотности воды	$d = \frac{\rho_m}{\rho_{H_2O}}$	безразмерная величина	$ \rho_{H_2O} = 1 \text{г/cm}^3 - \text{плотность воды} $		
4	Пористость	Степень заполнения объема материала порами	$\Pi = \left(1 - \frac{\rho_m}{\rho}\right) \cdot 100\%$	%	$\begin{split} \Pi = & V_n/V_e = (V_e - V_a)/V_e = 1 - V_a/V_e, \\ \text{где } V_n - \text{объем пор.} \\ \text{Величина пор: от нескольких ангстрем (1 A= 10^{-10} м) до нескольких мм.} \end{split}$		
5	Коэффициент плотности	Степень заполнения объема материала твердым веществом	$K_{\text{nn}} = \frac{\rho_m}{\rho}$	% или безразмерная величина	П+К _{пл} =100% (или 1)		
6	Влажность	Содержание влаги в материале в данный момент по отношению к массе сухого материала	$Wm = (m_1 - m_2)/m_2 \cdot 100\%$	%	m_1 — масса материала в состоянии естественной влажности, г; m_2 — масса материала, высушенного до постоянной массы, г		
7	Гигроскопичность	Способность капилляр- но-пористого материала поглощать водяной пар из воздуха			Процесс носит обратимый характер. Высокая гигроскопичность у материалов с развитой внутренней поверхностью: древесина, теплоизоляционные, стеновые материалы		
8	Водопоглощение	Свойство материала поглощать и удерживать воду при непосредственном контакте с ней	$W_{m} = \frac{m_{H} - m_{c}}{m_{c}} \cdot 100\%$ $W_{o} = \frac{m_{H} - m_{c}}{V_{e} \cdot \rho_{H_{2}O}} \cdot 100\%$ $W_{o} = W_{m} \cdot d$	%	W_{m} - водопоглощение по массе, %; $m_{_{\rm H}}$ — масса насыщенного водой материала, г; $m_{_{\rm C}}$ — масса сухого материала, г; $W_{_{\rm O}}$ водопоглощение по объему, %		
9	Коэффициент насыщения пор водой	Отношение водопо- глощения по объему к пористости	$K_{_{\mathrm{H}}} = \frac{W_{_{o}}}{\Pi}$	безразмерная величина	$K_{_{\rm H}} = 01;$ $K_{_{\rm H}} = 0$ — поры отсутствуют или все поры замкнутые; $K_{_{\rm H}} = 1$ — все поры открытые, сообщающиеся. $K_{_{\rm H}}$ косвенно характеризует морозостойкость материала		
10	Водостойкость	Способность материала сохранять прочность в водонасыщенном состоянии	$\mathbf{K}_{\mathrm{p}} = \frac{R_b}{R_c}$	безразмерная величина	K_p — коэффициент размягчения; R_c и R_B — соответственно, пределы прочности материала в сухом и водонасыщенном состоянии, МПа; K_p = 01. При K_p , равном 0,8 и более, материал считается водостойким		
11	Водопроницае-	Способность материала пропускать воду под давлением	$\mathbf{K}_{\Phi} = \frac{V_b \cdot a}{S(P_1 - P_2)\tau}$	м/с	K_{Φ^-} коэффициент фильтрации; V_b — объем воды, M^3 ; τ — время, c ; S — площадь, M^2 ; a — толщина слоя материала, M ; $(P_{1}P_2)$ — давление, M водного столба		
11a	Водонепроницае- мость	Способность материала не пропускать воду под давлением	W2, W12	кгс/см², атм	W2, W4 и т.д. — марки материала по водонепроницаемости; 2,12 — величина одностороннего гидростатического давления, которое выдерживает образец бетона		

№ п/п	Наименование свойства или коэффициента	Определение	Формула	Размерность	Пояснения
12	Паро- и газопро- ницаемость	Способность материала пропускать через свою толщу водяной пар или газ (например, воздух)	$\mathbf{K}_{\mathbf{n}} = \frac{a \cdot V \cdot \mathbf{p}}{S \cdot \tau \cdot \Delta p}$	кг/(м·с∙Па)	K_{r} коэффициент паропроницаемости; а — толщина слоя, м; V — объем пара, м³; р — плотность пара, кг/м³; τ — время, с; S — площадь, м²; Δp — разность давлений, Па
13	Морозостойкость	Свойство материала в насыщенном водой состоянии не разрушаться под действием многократного попеременного замораживания и оттаивания	F50, F100 и т.д.	циклы	F50, F100 — марки материала по морозостойкости 1 цикл: 1 замораживание при -15- 20°C + 1 оттаивание в воде комнатной температуры. Материал выдержал испытания, если потеря прочности ΔR≤5-25% (для разных материалов), Δм≤5%.
14	Теплопровод- ность	Свойство материала передавать тепло через свою толщу от одной поверхности к другой	$\lambda = \frac{Q \cdot a}{S \cdot \tau \cdot \Delta t}$	Bt/(m·°C)	Q — количества тепла, Дж; а — тол- щина слоя, м; τ — время, с; S — площадь, M^2 ; Δt — разность температур, °C
15	Теплоемкость	Свойство материала аккумулировать тепло при нагревании	$C = \frac{Q}{m \cdot \Delta t}$	кДж/(кг·°С)	m — масса материала, кг
16	Огнеупорность	Способность материала выдерживать действие высоких температур (свыше 1580°С)		°C	Материалы, выдерживающие t>1580°C – огнеупорные, 1350-1580°C – тугоплавкие, менее 1350°C – легкоплавкие
17	Огнестойкость	Свойство материала сопротивляться действию огня в условиях пожара в течение определенного времени		единицы времени	По степени огнестойкости: - несгораемые, - трудносгораемые, - сгораемые
18	Тепловое расши- рение	Свойство материала деформироваться при изменении температуры: расширяться при нагревании, сжиматься при охлаждении	ТКЛР, ТКОР	1/°C	ТКЛР (ТКОР) — температурный коэффициент линейного (объемного) расширения
19	Прочность	Способность материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними воздействиями	$R_{cw} = \frac{P}{F},$ $R_{usr} = \frac{3Pl}{2bh^2}$	кН/см², кгс/см², МПа	$R_{\rm cs}$ — предел прочности при сжатии; P — разрушающее усилие, κH ; F — площадь поперечного сечения стандартного образца, cm^2 ; $R_{\rm изг}$ — предел прочности при изгибе; l — расстояние между опорами, cm ; b и h — размеры поперечного сечения образца, cm
20	Упругость	Свойство материала самопроизвольно восстанавливать первоначальную форму и размеры после прекращения действия внешних сил	$\varepsilon = \frac{\Delta l}{l},$ $\varepsilon = \frac{\sigma}{E}$	% или безраз- мерная вели- чина	ϵ — относительная деформация; 1 — первоначальный линейный размер образца; ΔI — абсолютная деформация; σ — одноосное напряжение, МПа; E — модуль упругости (модуль Юнга), МПа. Упругая деформация — обратимая
21	Пластичность	Свойство материала изменять форму и размеры под действием внешних сил, не разрушаясь, и сохранять эти изменения после снятия нагрузки			Пластическая, остаточная деформация — необратимая

№ п/п	Наименование свойства или коэффициента	Определение	Формула	Размерность	Пояснения
22	Хрупкость	Свойство материала под действием нагрузки разрушаться без заметной пластической деформации («внезапное» разрушение)			Для хрупких материалов $R_{\text{сж}}/R_{\text{p}}=1015$ и более, R_{p} — предел прочности при растяжении
23	Удельная про- чность (коэффи- циент конструк- тивного качества)	Отношение прочности материала к его относи- тельной плотности	$R_{yz} = K_{kk} = \frac{R}{d}$	МПа	Примеры: Сталь: $R_{yд}(1000/7,85)$ =127 МПа; Стеклопластик: $R_{yд}(450/2)$ =225 МПа. Является характеристикой прочностной эффективности материала
24	Истираемость	Способность материала сопротивляться истирающим воздействиям	$M = \frac{m_1 - m_2}{F}$	г/см ^{2;} кг/м ²	m_1 — масса образца до истирания, г; m_2 — масса после истирания, г; F — площадь образца, см 2
25	Твердость	Способность материала сопротивляться проникновению в него другого, более твердого	$HB = \frac{P}{F}$	МПа, кгс/мм²	Р — нагрузка, кН, кгс; F — площадь отпечатка, мм² Твердость каменных материалов оценивают по шкале твердости Мооса в баллах от 1 до 10: самый мягкий — тальк (1), самый твердый — алмаз (10).
26	Износ	Способность материала сопротивляться одновременному воздействию истирания и удара	$\mathbf{u}_{\scriptscriptstyle \mathrm{3H}} = \frac{m_{\scriptscriptstyle 1} - m_{\scriptscriptstyle 2}}{m_{\scriptscriptstyle 1}} \cdot 100$	%	m_1 и m_2 — массы образца соответственно до и после испытания, г

механики хрупкого и пластического разрушения и др. разделов строительной механики и сопротивления материалов;

- расчет надежности по критерию устойчивости;
- расчет надежности по критерию предельного равновесия;
- расчет надежности по критерию прочности, в т.ч. при совместном действии изгиба и сдвига.

Что касается строительных материалов. Здесь обязательно нужно подчеркнуть, что особое внимание необходимо обратить на полимерные и композиционные материалы (П и КМ), которые в последнее время пользуются несомненным успехом и за которыми будущее.

Тем не менее к П и КМ есть вопросы:

- неизбежное старение П и КМ;
- недетерминированность их свойств;
- присущее П и КМ низкое сопротивление межслоевому сдвигу, сжатию и отрыву перпендикулярно волокнам и слоям, приводящим к характерным только для КМ формам разрушения;
- физико-химические процессы, протекающие на границе раздела «волокно - матрица» и определяющие циклическую прочность КМ, связи химического строения и структуры связующего с его макроскопическими свойствами (прочностью, удлинением при разрыве, вязкостью разрушения), не до конца изучены.

При оценке возможности разрушения элемента инновации проектировщик должен определить вероятные виды разрушения; выявить соответствующие характеристики, по которым аналитически можно судить о степени опасности. Необходим расчет значений установленных характеристик состояния инновации при заданных нагрузках и условиях окружающей среды и сопоставление расчетных значений с критическими характеристиками прочности материала. Если расчетные значения выбранных параметров будут равны или превышать критические значения параметров сопротивления материалов и будут вероятны разрушения конструкции - такой продукт не может быть принят к проектированию.

Характеристика важнейших свойств строительных материалов приведена в таблице.

Равноценными и равнозначными критериями для оценки инноваций на этапе проекта являются финансово-экономические критерии, научно-технические, производственные, экологические, а также критерии энергоэффективности, архитектурно-художественные и критерии качества.

Если говорить о критериях предпосылки реализации инновации, то здесь следует отметить причины инициации инновации (полнота и обоснованность необходимости реализации); корректность целей и задач инновации, соответствие их SMART-критериям (грамотность в постановке целей инновации, удовлетворение критериям: конкретность (S), измеримость (М), достижимость (А), реалистичность (R), определенность по времени (T).

Критериями гармонизации инновации и соответствия ее нормам Российской Федерации являются: наличие сертификата соответствия (ГОСТ Р); наличие сертификата пожарной безопасности; наличие санитарно-эпидемиологического сертификата; наличие иных сертификатов, в т.ч. систем добровольной оценки соответствия.

В случае формализации результатов анализа критериев инноваций используется балльная оценка проектов. Критериям присваиваются веса в зависимости от их важности.

Качественные оценки эффективности инноваций на стадии проекта по каждому из названных критериев должны иметь количественную оценку. Это могут сделать эксперты путем подробного описания, а затем количественного выражения составляющих критерия.

После рассмотрения всех вышеперечисленных критериев требуется разработка технико-экономического обоснования (ТЭО) проекта на основе внедренных в проект инноваций по утвержденным и действующим в проектной практике нормативно-правовым и нормативно-техническим основаниям (см. рис.).

Вся вышеизложенная теория использовалась при разработке двух новых методических документов Национального объединения проектировщиков (НОП) в области инноватики:

- 1. Методические рекомендации по оценке эффективности инноваций на этапе проекта.
- 2. Методическое пособие «Оценка эффективности инноваций на этапе проекта».

Методические документы размещены с левой стороны сайта НОП в файле «Законодательство» — «Проекты иных нормативно-правовых актов» — «Первые редакции методических документов НОП «Оценка эффективности инноваций на этапе проекта».

Просим представителей проектного сообщества и всех заинтересованных читателей уважаемого журнала дать замечания и предложения в отношении настоящих редакций методических документов по электронному адресу: chetverikmonitor@mail. ru. Все замечания и предложения будут учтены.

Библиографический список

- 1. Стратегия инновац-го развития $P\Phi$ на период до 2020 г. (утверждена распоряжением правительства $P\Phi$ от 8.02.2011 г. № 2227-р).
- Протокол заседания Правительственной комиссии по высоким технологиям и инновациям от 3 августа 2010 г. № 4.
- 3. Методические материалы по разработке программ инновационного развития акционерных обществ с государственным участием, государственных корпораций и федеральных государственных унитарных предприятий (утверждены распоряжением Минэкономразвития России от 31 января 2011 г. № 3Р-ОФ).
- 4. Методические материалы по разработке паспортов программ инновационного развития акционерных обществ с госучастием, госкорпораций и федеральных государственных унитарных предприятий (одобрены решением Рабочей группы по развитию частно-государственного партнерства в инновационной сфере при Правительственной комиссии по высоким технологиям и инновациям от 15 ноября 2011 г., протокол № 43-АК).

Электронные ресурсы:

- 1. Портал НОСТРОЙ (nostroy.ru).
- 2. Портал НОП (пор.ru).
- 3. Портал издат-ва «Стройиздат» (panor.ru/journals/snt/index.php.ru).

Картриджи

оригинальные совместимые восстановление заправка

Москва, м. Новослободская, ул. Краснопролетарская, д. 31/1, стр.5 Тел.: 8 (495) 940-63-20 www.tmshop.ru **Компания Tonerman** предлагает совместимые и оригинальные картриджи для лазерных принтеров и копировальных аппаратов ведущих мировых брендов оргтехники.

Совместимые картриджи для принтеров от Tonerman изготавливаются на базе оригинального корпуса, что позволяет им работать так же точно и четко, как и оригинальные картриджи. Мы также оказываем услуги по заправке и восстановлению картриджей. Оптимально подобранная технология производства позволяет заправлять наши картриджи такое же количество раз, как и оригинальные.

Точность каталога на нашем сайте исключает ошибки совместимости заказываемых картриджей. Конкурентные преимущества Tonerman — в неизменном соблюдении 3-х основных правил:

- 1. При производстве продукции мы используем только оригинальные корпуса. Идеальная геометрия, а также высококачественный и прочнейший пластик корпусов оригинальных картриджей это главное и ключевое условие идеальной печати.
- 2. Мы правильно подбираем все комплектующие. Тонер только японского и корейского производства и только химического типа выращивания. Каждый тип подбираемого тонера тестируется индивидуально и сравнивается с оригинальными оттисками. Фотобарабаны также японского и корейского производства проходят испытания на идентичность цветопередачи и насыщенности и на ресурсоемкость. Резиновые и магнитные валы, дозирующие и очищающие лезвия Корея. Микросхемы картриджей (чипы) подбор наиболее работоспособных и дорогих корейских чипов, использование программаторов на как можно более широкой линейке картриджей, быстрый вывод из оборота устаревших версий чипов. Все это выгодно отличает нашу компанию от конкурентов.
- 3. Мы заботимся о своих клиентах и предлагаем только самое лучшее! 100% гарантия на все услуги!